space workshop

A primary school workshop on space: the Earth, Sun, Moon and Solar System

This workshop is designed to cover the Earth and Space unit of the Science National Curriculum for year 5. It uses model making and other engaging activities to ensure the best possible learning of important scientific knowledge. The lesson is suitable for year 5 and 6.

The aim of the workshop is for children to understand:

1. The size, distances, orbits and composition of the main bodies in the Solar System: the Earth, Sun and Moon, as well as the planets and the major moons

2. Why we have days, years, seasons and lunar phases - how these are caused by the relative movements of the Sun, Earth and Moon

3. The most fascinating features of the Solar System, such as where there may be life, and the geology and weather of the planets and moons

These important topics are brought to life using creative hands-on activities, scientific puzzles, films, and photos. A variety of stimulating and enjoyable activities will help children grasp vital astronomical concepts and provide a memorable day of learning.

Main Activities

1. Learn about the Sun and its relationship to Earth by making a working globe of the Earth, as well as looking at models, photos and films, and playing games to guess the size and distance between these objects.

 

 

Main Activities

2. Learn about the Moon and its relationship to Earth by adding the Moon to the model of the Earth, as well as looking at photos, and playing size and distance games.

3. Learn about the rest of the Solar System by making two scale models of the Solar System (including the major moons), as well as ooking at photos and playing games.

 

The large scale model of the Solar System children will make

(click for larger version)

 

The small scale model of the Solar System children will make

(click for large version)

 

Price: £269 per class for a whole day. Max. 32 children.

 

To Book The Workshop:

  

Contact: Tony North

Email: tnorth67@hotmail.com

Tel: 0161 224 6445

 

Preparing for the Workshop

 

Lesson Plan: Morning

  

Earth, Sun and Moon

 

1. Introduction to the Earth and Sun (20 minutes)

 


  

We begin by reviewing the Earth - What is it? How big is it? How does it move?

 

Looking at photos, and acting out motions and sunlight with a globe and a torch, we see how the Earth rotates once every 24 hours and orbits the sun every 365 days. We also learn that the axis is tilted, and that there are warm parts (around the equator) and cold parts (at the poles). We will learn why this is later.

 

Next we consider the Sun: What is it? What is it made of and why does it give us light and heat?

 

To help children understand the size of the Sun (1.4 million km) and its distance from Earth (150 million km) we play games, which will be repeated during the day with other planets. Children work in small teams (up to 8 teams in all), each of which has a box with balls of various sizes (e.g. beads, marbles, golf balls).

 

In the first game I show children a large beach ball which stands for the Sun (about 46cm diameter - it will later be painted for our Jupiter model). Teams estimate the relative size of Earth, and hold up the correct ball from their box.

 

In this and other games winning teams receive prizes - a luminous star they can put on the wall of their bedroom.

  

 

In the second game, a golf ball (4cm) stands for the Sun, and all the children estimate how far away the Earth would be at this scale, by getting up and holding a pencil at the correct location in the classroom (the tip of the pencil represents Earth).

 

We briefly discuss why the Sun is so important to us on Earth: it provides heat and light without which life would not be possible.

 

2. Make a globe of the Earth (20 minutes)

 

Click for larger version

 

Each child now makes a working globe, using a plastic ball, wire, and a card base. They draw the continents on with permanent markers, make holes at the poles with darts, and thread and bend the wire so the model will spin on an axis. They sellotape the globe to a card base and use a protractor to bend the axis to 23 degrees.

  

Bending the wire with pliers

 

Drawing on the equator and continents

 

3. Learn about days and years (10 minutes)

 

We next use this model on a large diagram (an A1 laminated picture - see below) shared by the team on their tables, with a bright lantern in the centre to represent the Sun. By rotating their globes children see why we have day and night. Also, by moving their globes round the Sun a small amount each day, they see how a year comes about.

  

Click for larger version

 

4. Learn about seasons ( 10 minutes)

 

We now discuss what seasons are, and teams brainstorm why we might have them. Children learn the answer by placing their globes on the diagram at positions which stand for each season, with the globe always tilted in the same direction (shown by the arrows in the photo above).

 

In this way we see how in winter the northern hemisphere is tilted away from the sun, which means less sunlight reaches us (and also the sun has more atmosphere to pass through, which reduces its intensity). In summer we are tilted towards the sun, and so the opposite is true. We also see how the reverse is true for the southern hemisphere. There will be more questions and prizes.

 

To reinforce this idea, children shine a torch at a card. By tilting the card backwards they see how the area covered by the light increases, so the light is more spread out, and weaker at any one point.

  

Break (ideally at 10.30)

Some of the models used in the workshop - click for larger version

Lesson plan continues in the next column

 

 

 

5. The Moon (15 minutes)

 

 

The next subject is the Moon. We use photos, lights and models to understand its features, such as craters and mares (the dark parts of the Moon), its composition, and its formation, as well as human exploration.

 

To understand the size of the Moon and its distance from Earth, teams play games using balls, as before with the Earth and Sun.

  

If time allows we will discuss the importance of the Moon: it causes tides, and its gravity stabilises the tilt of the Earth. Both of these may be essential to life on Earth.

 

6. The Phases of the Moon (15 minutes)

 

To understand the phases of the Moon we shine a torch on a model and move it around a globe. Working in their teams, children then try this activity themselves.

  

We use a 1.5cm polystyrene ball to represent the Moon. Children draw on some of the features (the dark mares) and poke a hole through with a toothpick. Holding up the Moon each child turns around 360 degrees (in this activity their head represents Earth) while another child shines the torch on the Moon. They will then see the phases of the Moon over its 27-day orbit.

 

6. Adding the Moon to our globe model (15 minutes)

 

Click for larger version

  

Children now place the Moon model onto their globes, so the Moon can orbit the Earth. We see how the Moon orbits the Earth in 27 days, and reenact this on the large mat as before, with the lantern at the centre representing the Sun.

   

 

The Solar System

 

8. Introduction to the Solar System (45 minutes - likely to be split into two halves, before and after lunch break)

 

Before lunch we begin to learn about the rest of the Solar System. We begin with an overview:  the names and appearance of the planets, what order they are in, and how they move around the Sun.

 

We play a game - can anyone name all the planets in order? (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune; we will also look at Pluto although it is no longer classed as a planet).

 

We then take a closer look at each planet, as well as the large moons, using photos and the models which children will later paint to illustrate the relative sizes of these bodies. We discuss some of their most fascinating features, such as the searing temperatures on Venus, the valleys and volcanoes on Mars, the rings of Saturn, and the presence of water and possibly life on Mars, Europa and Enceladus.

  

Mars, showing the vast Valles Marineris valley system in the centre

Enceladus, a tiny moon of Saturn with a huge underground ocean of liquid water which may harbour life

 

A number of activities will keep children engaged and help them to understand important concepts.

 

a. To help children understand the scale of the Solar system we play a game. We see a graphic showing the Sun (about 4cm in size) and various possible positions which Mercury might occupy at this scale. Teams select a position, and as before children in the winning team get a luminous star. This activity shows us the enormous size of the Solar System, and the fact that it is difficult to represent all the planets and Sun to scale.

 

b. To help everyone understand the relative distances (but not sizes) of all the planets, two children will stick a labelled picture of each planet on the wall, using a scale of 1cm = 10 million km. This means that the furthest planet from the Sun, Neptune, will be 4.5m away from the Sun on the classroom wall. This activity teaches children that the gaps between the planets increase greatly, the further the planets are from the Sun.

 

 

Lesson plan continues in next column

 

 

The Solar System, continued

 

c. We also play an 'Earth or Mars?' game, in which teams see photos of the surface of Mars and similar desert areas on Earth, and have to decide which planet they show.

  

Earth or Mars? (answer here)

 

d. To understand the enormous size of Jupiter, I show children the beach ball (46cm) which they will paint later to represent the planet, and teams try to choose the correct ball for Earth from their box (the 4cm golf ball).

 

e. To understand the enormous distance of Neptune from the Sun, children are shown the positions of the Sun and Neptune in the classroom (4.5m apart, at the same scale as our wall display). They then choose the object from their box which represents the size of the Sun at this scale (a tiny 1.5mm bead).

 

For these games children will be allowed to use calculators and/or pen and paper/whiteboard and pen to do their working.

  

A volcano erupting on Io, a moon of Jupiter

 

If time allows, perhaps at the end of the day, I can also teach children about the origins of the Solar System.

 

9. Make two models of the Solar System (90 minutes approx.)

 

The small scale model of the Solar System

(click for large version)

 

Working in small groups or alone, children paint balls of various types and sizes to represent the planets and major moons of the Solar System. Over lunch I will need some children to help prepare for this activity by painting background colours on some of the balls. This is because for the larger models we use beach balls, and acrylic paint takes longer to dry on this sort of plastic.

 

I will provide balls carefully selected to accurately represent the relative sizes of the planets and moons. I will also provide brushes of various sizes, photo instructions, and a wide range of acrylic paint colours, most of which I have mixed myself in order for children to be able to paint the planets their true colours. I will also teach children how to paint neatly with the acrylic paint.

  

Photo of Jupiter children use to paint the model

 

We will make two scale models of the Solar System. The reason for this is that at the smaller scale, we use a 46cm beach ball to represent Jupiter, which means that Earth is only 4cm and Mars is 2cm. This would not allow children to paint the smaller planets in detail.

  

We therefore paint a second set of balls at a much larger scale. At this scale Earth and Venus are 38cm beach balls, and for Mars, Mercury and Pluto we use 20cm, 15cm and 7cm polystyrene balls. This larger scale also allows children to paint the major moons in detail (Ganymede, Callisto, Europa, Io, Titan, Enceladus, Triton, and our own Moon).

  

The larger scale models of Earth (38cm) and Mars (20cm)

  

It is not possible to make the gas giants at the larger scale, as Jupiter would be 4m and Saturn 8m (because of its rings). Instead I will provide my own 2D cloth models (see below) for children to compare with their own painted models.

 

10. See the models in the hall (20 minutes)

 

At the end of the day, we will go into your school hall and look first at the small scale model, with children holding each model in the correct order. This allows everyone to get a good sense of the relative sizes of the planets and moons.

  

Children holding the small model of the Solar System (click for larger version)

 

Next we lay out my cloth models of the gas giants (Jupiter, Saturn, Uranus and Neptune) and compare them to the children's larger scale models. The enormous size of this model will provide the 'wow' factor you expect from a workshop (Jupiter is 4.2m, Saturn 8.2m, and Uranus and Neptune are about 1.5m).

 

The large scale model of the Solar System

(click for larger version; at the front are Mercury, Venus, Earth, the Moon, and Mars; with Jupiter are Ganymede, Callisto, Io and Europa; and we can also see Titan, Triton and Pluto

 

We finish by discussing what we can learn from these models, and a quick quiz for more prizes. For example, in the hall children can stand where they think the Moon should be relative to our larger model of the Earth (answer: 11m away).

 

I will then answer any questions the children may have.

 

The photo showed Mars!